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Abstract

The e�ective response of disordered heterogeneous materials, in general, is not amenable to exact analysis because
the phase geometry may not be completely speci®ed. Besides the bounds for the e�ective moduli, most reported
results are essentially approximate, may contradict each other or even violate the bounds. With increasing number

of phases, and therefore increasing uncertainty inherent in the very statement of the problem, the investigation of
e�ective response becomes less amenable to analytical treatment, in particular, by methods of boundary-value
problems of mathematical physics. The present paper reports a methodology for investigating the e�ective response

of disordered composites with the help of neural networks as well as particular results obtained for e�ectively
isotropic and macroscopically homogeneous two-phase materials. It is shown that, after incorporating the bounds
and proper training, simple neural networks may describe a wide variety of the e�ective response for two-phase

composites, though in general more complicated networks appear necessary. 7 2000 Elsevier Science Ltd. All rights
reserved.
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1. Introduction

The present paper reports investigations into the e�ective response of disordered composites with the
help of a neural network, which has recently become one of the main paradigms of engineering research.
Though the operation of these networks resemble only super®cially the brain physiology, they have
proven useful in treating problems characterized by incomplete a priori given information and are
di�cult for exact analysis, in particular, by the methods borrowed from boundary-value problems of
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mathematical physics. This is typical of disordered materials and therefore neural networks, which are
capable of discovering a `hidden' regularity, may constitute a useful tool for specifying their e�ective
response.

A neural network consists of mutually connected processing elements (neurons), whose weights may
be adjusted so as to comply with the information available on the subject. The transfer function of the
neurons is usually of a `saturating' type. The process of specifying the weights is known as training,
after which the network may acquire a generic potential, including extrapolation and interpolation
capabilities. That is why the account for a priori information is critical for a successful application of a
neural network. In this regard, the situation is similar to that of direct variational methods, which also
require accurate account for the available information to be successful (Beltzer, 1996). Another
similarity with direct variational methods is presence of a heuristic ingredient. Gallant (1994) and Hagan
et al. (1996) present an extensive treatment of neural networks. Applications to identi®cation of civil
engineering structures may be found in Sato and Sato (1995, 1997). Recently Zeng (1998) published a
review of applications of neural networks.

For details concerning the e�ective static response the reader is referred to the works by Cleary et al.
(1980), Christensen (1990), Hale (1976), Hashin (1983), Watt and O'Connell (1976), Willis (1981) and
the monograph by Nemat-Nasser and Hori (1993). Relevant aspects of the problem are also discussed
by Beltzer (1989). The e�ective response of disordered heterogeneous materials is not amenable to exact
analysis because the phase geometry may not be completely speci®ed. Besides the bounds for the
e�ective moduli, most reported results are essentially approximate, may contradict each other or even
violate the bounds. Resort to a particular shape of inclusion necessary in the frameworks of such
methods as the composite sphere assemblage or self-consistent schemes seems to contradict to a basic
assumption of `arbitrary' phase geometry, which should come into play through the volume
concentration only. With increasing number of phases and therefore increasing uncertainty inherent in
the very statement of the problem, the investigation of e�ective response becomes less amenable to
analytical treatment, in particular, by methods of boundary-value problems of mathematical physics.
That is why applications of neural networks to this problem should be useful.

This paper, which is a sequel to communication by Beltzer and Sato (1998), deals with:

1. the general methodology of application of neural networks to disordered heterogeneous materials;
2. results derived for the e�ective moduli of two-phase composites as a particular case.

The elastic response of isotropic composites is governed by two e�ective moduli. We therefore consider,
as a touchstone, a problem of specifying the bulk and Young's moduli, K and E, respectively, of a two-
phase elastic isotropic material of arbitrary geometry.

The lower Kÿ and upper K+ Hashin±Shtrikman bounds for the bulk modulus K for such composites
are (Hashin, 1983)

Kÿ � K1 � c2
1=�K2 ÿ K1� � 3c1=�3K1 � 4G1�

K� � K2 � c1
1=�K1 ÿ K2� � 3c2=�3K2 � 4G2� �1�

where K1 and K2 are the bulk moduli of the phases, G1 and G2 their shear moduli, c1 and c2 their
volume concentrations and K1 < K2, G1 < G2, c1+c2=1, Similarly, for the shear modulus, G, the
bounds are

Gÿ � G1 � c2
1=�G2 ÿ G1� � 6c1�K1 � 2G1�=5G1�3K1 � 4G1�
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G� � G2 � c1
1=�G1 ÿ G2� � 6c2�K2 � 2G2�=5G2�3K2 � 4G2� : �2�

These bounds are the best ones possible as far as arbitrary geometry is concerned, and their disparity is
sensitive to the shear moduli ratio, G1/G2, vanishing for G1/G2=1. The latter case, for which the exact
solution does exist, is known as Hill's solid (Hale, 1976) and is naturally excluded from the present
investigation. The main body of experiments available deals with the e�ective moduli K and E rather
then K and G. The bounds for E follow from the well known relation E=E(K, G ) and expressions (1)
and (2):

E2 � 9K2G2

3K2 � G2
: �3�

The next section deals with design and training of neural networks for evaluating K and E. In section 3
the neural computations are compared with experimental data and theoretical results. Conclusions are
given in section 4.

2. Neural networks for K and E

It is assumed that:

1. the composite microstructure is not completely known and is speci®ed in terms of K1, K2, G1, G2, c2,
(or c1=1ÿc2) only;

2. the composite may be treated as e�ectively isotropic and macroscopically homogeneous.

This statement and Eqs. (1) and (2) show that the networks should incorporate the above ®ve inputs.
Besides this, the network versatility may be greatly increased by adding unit input with unknown
weight, the so-called bias (Gallant, 1994). Though insu�cient number of neurons may lead to
problematic learning, the case of excessive neurons has di�culties of its own, as such a network would
be complicated and have a tendency of `over®tting'. One is therefore interested in a network of possibly
minimal number of neurons.

We consider below a single-neuron network (perceptron) with six inputs. Fig. 1 shows the chart,
where wi, i = 0, . . . , 5, are the weights of the inputs ui, i = 0, . . . , 5, to be speci®ed by the training
process. As to the transfer function, we note that the e�ective moduli depend on its arguments in a non-
linear manner and are bounded from below and above. A sigmoid transfer function

ÿ1RF�n� � tanh�n�R� 1 �4�
may incorporate this fundamental behavior. Here F is the network output (see Fig. 1) and

n �
X5
i�0

wiui � w0 � w1K2 � w2G2 � w3K1 � w4G1 � w5c2 �5�

is the total (weighted) network input.
Given the value of F, the bulk modulus K follows as:

K �
�
F

2
� 1

2

�
K� �

�
F

2
ÿ 1

2

�
Kÿ �6�

and the inverse transformation
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F � 2Kÿ �K� � Kÿ�
K� ÿ Kÿ

�7�

relates KÿR KR K+ and the network output ÿ1R FR 1.
Similar expressions hold for Young's modulus E. Evidently, the weights and biases can be di�erent

for the cases of K and E. This methodology enables one to inherently incorporate the bounds, which are
shown below to also facilitate a proper speci®cation of the training set.

Besides the bounds, the relevant information consists of experimental data, which are approximate
because of the experimental scatter. Indeed, some experiments fall outside the bounds and must be
excluded from considerations. Also, experiments with dilute mixtures or with the phases having slight
mismatch of the shear moduli are of little interest, as the Hashin±Shtrikman bounds are su�ciently
stringent in this case.

Below use is made of experiments with sintered alumina, ceramics, tungsten carbide-cobalt alloy and
KCl+Cu aggregate for a wide interval of the volume concentrations. These data should be divided into
a training set used for the training of the neural network (the procedure known as the supervised
learning) and a test set used for a posteriori comparison of the neural computation with experimental
results. There is no precise recipe for specifying the size of a training set which is usually a matter of
engineering judgment. It is essential that this set includes samples displaying the e�ect at hand to its
maximal degree. In the present context, some of the reported data bear little information compared to
the bounds, as noted earlier.

Excessive experimental data included in a training set may involve `noisy' samples, bring about
`over®tting' and damage the generalization capability of the network. It appears that data dealing with
concentrated mixtures c1 1 c2 1 0.5 and possibly large mismatch of the shear moduli are most
informative, as the uncertainty left over by the bounds is maximal under these conditions. Because, as
the present methodology suggests, the bounds are fed into the network separately for each particular
composite prior to the weight optimization process, it seems possible to adopt small training sets, which

Fig. 1. Neural computation of e�ective moduli.
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are mainly `placed' in the region of maximal disparity between the bounds. At the same time, it is
essential that the training samples should represent a possibly large variety of microstructure in
agreement with the assumption (1) made in the above. A good a posteriori agreement between the
neural computation and the test set suggests a well-de®ned neural network, which, in this sense,
discovers a `hidden' regularity.

The experimental data dealing with E and K are shown in Tables 1 and 3, respectively, and also
repeated in Tables 2 and 4). For obvious experimental reasons the available data for K are considerably
less than those for E. The training sets, shown by a dot, ®rst consisted of three samples (Tables 1 and 3)
and then of four samples (Tables 2 and 4. These samples have been so chosen as to comply with the
above comments concerning speci®cation of the training sets.

The Tables 1±4 also present the weights and biases arrived at by the gradient descent method chosen
to perform the training. The reader is referred to Gallant (1994) and Hagan et al. (1996) for details of
the numerical algorithm.

3. Analysis of results

Tables 1 and 2 show the comparison of the neural computation of Young's modulus EN with the
available experimental data for the case of three and four training samples, respectively. The column RN

presents the value of the relative error for the neural computation and the column RA the value of the
relative error if the arithmetic average of the Hashin±Shtrikman bounds would be used for prediction. It
is seen that the neural computation provides a reasonable agreement with the experimental data. Except
for the materials for which the gap between the bounds is narrow and any value consistent with the
bounds would be acceptable from a practical point of view, the neural computation shows much better
agreement with the experimental data. This is particularly true for the network trained with four
samples.

The similar conclusions follow from Tables 3 and 4, which show the results for the bulk modulus K.
Once again the accuracy of neural computation KN is much better than that of the arithmetic average of
the Hashin±Shtrikman bounds and the prediction further improves when four samples are used for the
training instead of three. A particular experiment with porous Mg Al2O4, c2=0.61, appears inconsistent
and may be considered as outlier. The generalization capability of the networks seems fairly impressive,
particularly in view of their extreme simplicity and the small training sets.

Going over to comparison of the neural computation with analytical techniques such as the self-
consistent scheme and the di�erential method, we note that even though the results associated with these
techniques employ the phase concentration c2 as the only phase geometry parameter, their derivation
essentially assumes a particular phase geometry (spherical inclusions embedded in a homogeneous
matrix). On the other hand, the above neural computation is solely based on the Hashin±Shtrikman
bounds and experiments which incorporate a variety of microstructures in agreement with the
assumption made. Therefore any comparison between these approaches should not be taken literally.
This comparison would be more meaningful if the training and test sets consist only of the samples of
spherical inclusions in a purely homogeneous matrix. Presently, to the best knowledge of these authors,
the available experimental data of this type are too limited to allow for such a procedure.

Nevertheless, it would be of interest to appreciate the di�erence between these analytical models and
the neural computation in case of composite with a particularly large gap between the Hashin±
Shtrikman bounds. Figs. 2 and 3 show the e�ective moduli E and K, respectively, as functions of the
volume concentration, c2, for a composite with the following values of elastic moduli: K2=30 GPa,
G2=22 GPa, K1=1 GPa, G1=0.375 GPa. The values, which correspond to the di�erential scheme and
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to the self-consistent method, have been computed according to expressions discussed in detail by
Christensen (1990) and Zimmerman (1991).

If, contrary to the assumption (1) of Section 2, the inclusion shape is known, the training set should
be reformulated so as to include proper samples, say, disk-like inclusions. The Hashin±Shtrikman
bounds still hold, though, in general, they may be replaced by more stringent bounds because of the
speci®c geometry involved. This would allow for incorporating the e�ect of inclusion shape.

Further, since the Hashin±Shtrikman bounds do not distinguish between phases in the form of matrix
or particles, in order to investigate yet another e�ect of `which component is the matrix phase and
which is the inclusion phase', one should design two networks trained on two di�erent sets. One of these
sets should contain only the samples with much sti�er matrix phase and the second with much sti�er
particles phase. A single network may also be designed, if one employs additional input parameter, say,
ÿ1 for the ®rst case and 1 for the second. Unfortunately, the experimental data presently available do
not seem su�cient for such investigations.

It is well-known that engineering problems may be amenable to solutions by various methods, which
is also the case at hand: instead of neural networks the problem may be treated by traditional statistical
methods, which also deal with the treatment of experimental data. The general discussion on the
advantages and drawbacks of each of these two approaches is outside of the scope of this work, which
is focused on the prediction of the e�ective response of composites. Nevertheless, the simplicity of the

Fig. 2. E�ective Young's modulus, E (GPa) vs volume concentration c2: K1=1 GPa, G1=0.375 GPa, K2=30 GPa, G2=22 GPa.
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results obtained herein and a possibility of their extension to more complicated cases in the frameworks
of the modern paradigm of neural networks seems attractive.

4. Conclusions

The uncertainty typical of disordered heterogeneous materials increases in case of multiphase and
incompletely speci®ed microstructure. This further complicates their analysis by the conventional
methods borrowed from boundary-value problems of mathematical physics and neural networks may
serve as a useful alternative.

The bounds play an essential role in the present methodology of applications of neural networks to
the e�ective response of disordered composites. Since the experimental data concerning dilute mixtures
and/or slight mismatch of elastic moduli bear little information compared to the bounds, they may be
put aside while specifying a training set. Then the bounds are fed into the neural network separately for
each particular composite as an integral part of the training. The generalization capability of the
designed networks appears substantial, particularly in view of their extreme simplicity and the small

Fig. 3. E�ective bulk modulus, K (GPa) vs volume concentration c2 for the same composite as in Fig. 1.
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training sets employed. Though the simple perceptrons show a wide variety of the e�ective response for
two-phase composites, in general a more complicated network appears necessary.

It seems that neural networks, which incorporate the relevant bounds and are trained on small but
properly selected experimental sets, may provide a useful insight into the e�ective behavior of
heterogeneous materials.
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